Phenotypic Mismatches Reveal Escape from Arms-Race Coevolution

نویسندگان

  • Charles T Hanifin
  • Edmund D Brodie
  • Edmund D Brodie
چکیده

Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were "ahead" of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal selection at the phenotypic interface of coevolution.

Coevolutionary interactions depend upon a phenotypic interface of traits in each species that mediate the outcome of interactions among individuals. These phenotypic interfaces usually involve performance traits, such as locomotion or resistance to toxins, that comprise an integrated suite of physiological, morphological and behavioral traits. The reciprocal selection from species interactions ...

متن کامل

Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage Qβ and Escherichia coli

According to the Red Queen hypothesis or arms race dynamics, coevolution drives continuous adaptation and counter-adaptation. Experimental models under simplified environments consisting of bacteria and bacteriophages have been used to analyze the ongoing process of coevolution, but the analysis of both parasites and their hosts in ongoing adaptation and counter-adaptation remained to be perfor...

متن کامل

Coevolution is linked with phenotypic diversification but not speciation in avian brood parasites.

Coevolution is often invoked as an engine of biological diversity. Avian brood parasites and their hosts provide one of the best-known examples of coevolution. Brood parasites lay their eggs in the nests of other species, selecting for host defences and reciprocal counteradaptations in parasites. In theory, this arms race should promote increased rates of speciation and phenotypic evolution. He...

متن کامل

Predators Make (Temporary) Escape from Coevolutionary Arms Race

Arguably cute and spanning at most 20 cm from head to tail, the roughskinned newt packs pretty near the most poisonous punch known to the animal kingdom. Taricha granulosa, like all species in its genus, exudes an exceptionally potent neurotoxin, tetrodotoxin (TTX) from its skin glands. Some Taricha newts could wipe out thousands of mice or a clutch of humans with their toxic issue. But why pro...

متن کامل

New Methods for Competitive Coevolution

We consider "competitive coevolution," in which fitness is based on direct competition among individuals selected from two independently evolving populations of "hosts" and "parasites." Competitive coevolution can lead to an "arms race," in which the two populations reciprocally drive one another to increasing levels of performance and complexity. We use the games of Nim and 3-D Tic-Tac-Toe as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008